KU-60019 is 10-fold more effective than KU-55933 at blocking radiation-induced phosphorylation of key ATM targets in human glioma cells. As expected, KU-60019 is a highly effective radiosensitizer of human glioma cells. A-T fibroblasts were not radiosensitized by KU-60019, strongly suggesting that the ATM kinase is specifically targeted. Furthermore, KU-60019 reduced basal S473 AKT phosphorylation, suggesting that the ATM kinase might regulate a protein phosphatase acting on AKT. In line with this finding, the effect of KU-60019 on AKT phosphorylation was countered by low levels of okadaic acid, a phosphatase inhibitor, and A-T cells were impaired in S473 AKT phosphorylation in response to radiation and insulin and unresponsive to KU-60019.

June 21, 2017

prudect name : KU-60019 is 10-fold more effective than KU-55933 at blocking radiation-induced phosphorylation of key ATM targets in human glioma cells. As expected, KU-60019 is a highly effective radiosensitizer of human glioma cells. A-T fibroblasts were not radiosensitized by KU-60019, strongly suggesting that the ATM kinase is specifically targeted. Furthermore, KU-60019 reduced basal S473 AKT phosphorylation, suggesting that the ATM kinase might regulate a protein phosphatase acting on AKT. In line with this finding, the effect of KU-60019 on AKT phosphorylation was countered by low levels of okadaic acid, a phosphatase inhibitor, and A-T cells were impaired in S473 AKT phosphorylation in response to radiation and insulin and unresponsive to KU-60019.
KU-60019

Synonyms: CAS NO: 925701-49-1Molecular Formula: C30H33N3O5SMolecular Weight: 547.67Purity: 98% minSolubility: In DMSOStorage: −20°C


GDC0199 References PubMed ID::http://www.ncbi.nlm.nih.gov/pubmed/18522126