Ties, physicochemical stability, and pump compatibility of 3 rapid-acting H2 Receptor MedChemExpress insulin analoguesaspart, lisproTies,

July 2, 2023

Ties, physicochemical stability, and pump compatibility of 3 rapid-acting H2 Receptor MedChemExpress insulin analoguesaspart, lispro
Ties, physicochemical stability, and pump compatibility of three rapid-acting insulin analoguesaspart, lispro, and glulisine. Endocr Pract. 2011;17(two):2710. 7. KDM4 MedChemExpress Nielsen L, Frokjaer S, Brange J, Uversky VN, Fink AL. Probing the mechanism of insulin fibril formation with insulin mutants. Biochemistry. 2001;40(28):839709. eight. Van Bon AC, Bode BW, Sert-Langeron C, DeVries JH, Charpentier G. Insulin glulisine when compared with insulin aspart and to insulin lispro administered by continuous subcutaneous insulin infusion in individuals with kind 1 diabetes: a randomized controlled trial. Diabetes Technol Ther. 2011;13(six):6074. 9. Phillips BD, Aurand LA, Bedwell MM, Levy JR. A novel strategy to preventing diabetic ketoacidosis inside a patient treated with an insulin pump. Diabetes Care. 2003;26(ten):2960. 10. Woods RJ, Alarc J, McVey E, Pettis RJ. Intrinsic fibrillation of fast-acting insulin analogs. J Diabetes Sci Technol. 2012;six(two):2656. 11. Naik S, Kerr D, Begley J, Morton J. Influence of nearby skin temperature and option of insulin analog on catheter occlusion rates in the course of continuous insulin infusion: an exploratory study. Diabetes Technol Ther. 2012;14(11):10182. 12. Ling J, Hu M, Hagerup T, Campbell RK. Lispro insulin: adsorption and stability in selected intravenous devices. Diabetes Educ. 1999;25(2):2375. 13. Jars MU, Hvass A, Waaben D. Insulin aspart (AspB28 human insulin) derivatives formed in pharmaceutical solutions. Pharm Res. 2002;19(five):621. 14. Jorgensen L, Bennedsen P, Hoffmann SV, Krogh RL, Pinholt C, Groenning M, Hostrup S, Bukrinsky JT. Adsorption of insulin with varying self-association profiles to a solid Teflon surface–influence on protein structure, fibrillation tendency and thermal stability. Eur J Pharm Sci. 2011;42(5):5096. 15. DeFelippis MR, Bell MA, Heyob JA, Storms SM. In vitro stability of insulin lispro in continuous subcutaneous insulin infusion. Diabetes Technol Ther. 2006;eight(3):3588. 16. Lougheed WD, Zinman B, Strack TR, Janis LJ, Weymouth AB, Bernstein EA, Korbas AM, Frank BH. Stability of insulin lispro in insulin infusion systems. Diabetes Care. 1997;20(7):1061. 17. Sharrow SD, Glass LC, Dobbins MA. 14-day in vitro chemical stability of insulin lispro within the minimed paradigm pump. Diabetes Technol Ther. 2012;14(3):2640. 18. Senstius J, Harboe E, Westermann H. In vitro stability of insulin aspart in simulated continuous subcutaneous insulin infusion working with a MiniMed 508 insulin pump. Diabetes Technol Ther. 2007;9(1):75. 19. Senstius J, Poulsen C, Hvass A. Comparison of in vitro stability for insulin aspart and insulin glulisine throughout simulated use in insulin pumps. Diabetes Technol Ther. 2007;9(six):5171. 20. Senesh G, Bushi D, Neta A, Yodfat O. Compatibility of insulin lispro, aspart, and glulisine together with the Solo micropump, a novel miniature insulin pump. J Diabetes Sci Technol. 2010;four(1):1040. 21. Poulsen C, Langkjaer L, Wors C. Precipitation of insulin goods applied for continuous subcutaneous insulin infusion. Diabetes Technol Ther. 2005;7(1):1420. 22. Poulsen C, Langkjaer L, Wors C. Precipitation of insulin aspart and insulin glulisine items employed for continuous subcutaneous insulin infusion. Diabetes Technol Ther. 2007;9(1):265. 23. Kerr D, Morton J, Whately-Smith C, Everett J, Begley JP. Laboratory-based non-clinical comparison of occlusion prices applying 3 rapid-acting insulin analogs in continuous subcutaneous insulin infusion catheters employing low flow rates. J Diabetes Sci Technol. 2008;2(three):450. 24 Bode BW, Strang.